Allylic Radicals from Methylenecycloalkanes

By Lodovico Lunazzi and Giuseppe Placucci,* Istituto di Chimica Organica, Universitá, Viale Risorgimento 4, Bologna, Italy
Loris Grossi, Istituto Chimico, Politecnico, Milano, Italy

Abstract

ion of an allylic hydrogen in methylene cyclo-propane, -butane, -pentane, and -hexane affords the corresponding allylic radicals. Their e.s.r. spectra can be detected in appropriate conditions below -100 ${ }^{\circ} \mathrm{C}$. In the case of the six-membered ring radical the two pseudoaxial and the two pseudoequatorial hydrogens are diastereotopic, thus indicating that, as expected, a half-chair conformation is adopted. On the other hand the five-membered ring radical prefers an envelope conformation, whereas the four-membered ring radical (and obviously the three-membered) are planar.

Hydrogen abstraction from $\mathrm{CH}_{3}, \mathrm{CH}_{2}$, or $\mathrm{CH} \alpha$ to a double bond yields allylic radicals that can be detected by e.s.r. spectroscopy. ${ }^{\mathbf{1}, 2}$ Both the cis- and trans-alkyl substituted isomers of the open-chain allylic radicals have been obtained. ${ }^{2}$ Recently an allylic-like radical, having three nitrogen instead of three carbon atoms, has also been reported. ${ }^{3}$ Cyclic allylic radicals have been obtained only in the cis-configuration: $\mathbf{x}^{\mathbf{2 , 4 , 5}}$ we report here the e.s.r. detection of cyclic allylic radicals with the ring substituent in a trans-configuration.

The radicals were obtained by photolysis of $\mathrm{Bu}^{\mathrm{t}} \mathrm{OOBu}^{\mathrm{t}}$ in presence of the methylenecycloalkanes (1)-(4).

Reactions (1) and (2) occur.

(5) - (8)

In the case of $n=\mathbf{2}-\mathbf{4}$ only the corresponding allylic radicals (6)-(8) were observed, whereas in the case of $n=1$ (methylenecyclopropane) a second radical, in addition to 2 -methylenecyclopropyl (5), has been detected with similar intensity. Its e.s.r. spectrum consists of two triplets ($a_{\mathrm{H}} 26.8$ and 21.8 G respectively), further split in two doublets ($a_{\mathrm{H}} 0.55$ and 0.26 G). Most likely we have been observing the allylmethyl radical $\cdot \mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$, arising from ring opening, followed by rearrangement. The same radical has also been reported in the photolysis of methylcyclopropane. ${ }^{2}$

A sample spectrum of these allylic radicals is shown in Figure 1 [radical (6) from methylenecyclobutane]. In the Table the hyperfine splitting constants $\left(a_{H}\right)$ of radicals (5)-(8) are reported.

The assignment of the a_{H} values has been performed by analogy with those of the corresponding open-chain
trans-substituted allylic radicals. ${ }^{2}$ In the three-membered radical (5) the β-hydrogens of the allylic moiety ($1 \beta-$ and $3 \beta-\mathrm{H}$) (see Table for numbering) have quite
Hyperfine coupling for the allyl radicals (5)-(8) constants

Substrate \quad\begin{tabular}{c}
Allyl

radical

$\quad\left(a_{\text {H }}\right) \quad$

Coupling constants

(G)
\end{tabular}

(1)
(5)

(6)

(7)

$\left.\begin{array}{ll}a_{1 a} & 14.50 \\ a_{1 \beta .3} \beta & 13.75 \\ a_{4 \cdot a x} & 28.00 \\ a_{4 \cdot \mathrm{eq}} & 15.00 \\ a_{7.7^{\prime}} & 3.75 \\ a_{7 \mathrm{ax}} & 4.75 \\ a_{7 \cdot \mathrm{eq}} & 2.75\end{array}\right\}$ at $-100^{\circ} \mathrm{C}$ at $-120^{\circ} \mathrm{C}$
(8)
different splittings, whereas these splittings become almost degenerate in radicals with larger rings [i.e. (6)-(8)]. It appears then that the strain of the three-membered ring affects the geometry of the allylic group, thus modifying the symmetric spin density distribution on the β-hydrogens in position 1 and 3. The equivalence of the cor-
responding a_{H} values, in fact, is observed not only in (6) (8) but also in the open-chain trans-allylic radical (trans-but-2-enyl) ${ }^{2}$ where there is no strain whatsoever.

The splittings of the hydrogen atoms of methylene group bonded to one of the terminal carbons (C-3) of the allylic moiety appear to be much larger than those of CH_{2} bonded to the central allylic C-2. The spin density on $\mathrm{C}-1$ and -3 is known to be larger than that on C-2. In connection with this fact it is interesting to observe that in (5) where C-4 is bonded to both C-2 and -3 , the a_{H} splitting of $4-\mathrm{H}$ is almost equal to the difference of those of 4 - and $5-\mathrm{H}$ of the four-membered radical (6), thus suggesting that the latter couplings have opposite sign.
the $1: 2: 1$ triplet due to the 7 - and $7^{\prime}-\mathrm{H}$ pair becomes a pair of doublets, the average of the new splittings $\left(2.7_{5}\right.$ and $4.7_{5} \mathrm{G}$) being equal to that of the former triplet. Therefore at -100° the interconversion is slow enough as to show different splittings for those diastereotopic hydrogens (such as 4 - and 4^{\prime}-H) with large $a_{\text {H }}$ differences whereas it is still too fast to distinguish between the diastereotopic 7 - and $7^{\prime}-\mathrm{H}$ which have a much smaller Δa_{H}. Unfortunately the low signal-to-noise ratio and the complexity of the spectrum at -120° did not allow a reliable line-shape analysis for measuring the interconversion barrier. However, a knowledge of the two a_{H} values for the diastereotopic hydrogens can give inform-

Figure 1 Experimental and computer simulated (line width 0.3 G) e.s.r. spectra of 2 -methylenecyclobutyl radical (6) at $-100{ }^{\circ} \mathrm{C}$ in cyclopropane

The hyperfine splitting constants of the pair of hydrogens in position 4 are equal in (5)-(7) and so are those of the hydrogens in positions 5 and 6 in (6) and (7). This means that either the conformation of these rings is planar or that the rings interconvert rapidly through a dynamic plane of symmetry. Planarity is compulsory for the three-membered ring [radical (5)] and very likely for the four-membered ring of (6) owing to the presence of a partial double-bond: for radical (7), on the contrary a non-planar conformation is possible. In the radical (8) the $a_{\text {II }}$ values in position 4 are non-equivalent at -100° (see Table), whereas those in position 7 are equal ($a_{7}, 7 . \mathrm{H}$. $\left.3.7_{5} G\right)$. However, some spectral lines are broader than others, thus indicating that a dynamic process (most likely interconversion between two equivalent conformations) occurs in a time scale comparable with the spin lifetime. This is confirmed by the fact that, at -120°,
ation about the ring conformation of radical (8). In principle two conformations deserve consideration, the envelope ${ }^{6}$ (sometime called ' sofa ') and the half-chair ${ }^{6}$ (sometime referred to as twisted). Both conformations (Figure 2) can interconvert into an enantiomeric form via ring inversion, thus accounting for the observed lineshape effect. In the envelope form one of the two pairs of hydrogens has the dihedral angles θ (i.e. the angles between the CH bond and the π orbital bearing the unpaired electron) equal, respectively, to 0 and 60°; the other pair has two equivalent dihedral angles, each equal to 30°. The a_{H} values of the protons in position β to the unpaired electron are known ${ }^{7}$ to depend on θ according to equation (3).

$$
\begin{equation*}
a_{\mathrm{H}}=A+\mathrm{B} \cos ^{2} \theta \tag{3}
\end{equation*}
$$

As a consequence this envelope conformation cannot
account for the four different a_{H} values experimentally observed, since two hydrogens, although diastereotopic, have equal θ, and thus should have almost equal splittings. On the other hand, the half-chair conformation has a pseudoaxial ($\theta 10^{\circ}$) and a pseudoequatorial (050°) hydrogen on both C-4 and -7 (Figure 2) and therefore four different splittings can, in principle, be obserred. To confirm the half-chair arrangement we must obtain θ $\cong 10^{\circ}$ using the experimental splittings to fit equation (3). It should be remembered that $\theta 50^{\circ}$ for the pseudoequatorial hydrogens will then be a consequence of the relationship $\theta_{\mathrm{ax}}+\theta_{\text {eq }}=60^{\circ}$, which holds for a sixmembered ring. It is also worth mentioning that in smaller rings the sum of the angles θ is smaller: it is in fact $c a .56^{\circ}$ in the five-, 50° in the four-, and 36° in the
$\theta 8^{\circ}$. There is little doubt that the average value, $\theta 10$ $\pm 2^{\circ}$, fits expectations for a half-chair conformation.

With the assumption that A and B maintain the same values it is possible to investigate the conformation of the five-membered ring radical (7). This assumption can be tested with the four-membered radical (6) which is expected to be planar; for the ring to assume a puckered conformation the allylic moiety of (6) should, in fact, lose its planarity. The experimental splittings of $1 \alpha-, 1 \beta$-, and $3 \beta-\mathrm{H}$ have values very close to those of all the other planar allylic radicals. ${ }^{2}$ In a planar conformation the θ value of (6) is expected to be ca. $\mathbf{2 5}{ }^{\circ}$: the use of the relation (3), with the A and B values already determined, gives $\theta 25.7^{\circ}$. This confirms that the same values can be also used for assigning the conformation of (7).

Figure 2 Schematic drawing of the envelope (left) and half-chair (right) conformation of 2-methylenecyclohexyl radical (8)
three-membered rings. In the case of radical (8) two independent equations (4) and (5) can be derived for the splittings of the two hydrogens in position 4.

$$
\begin{align*}
& 28 \mathrm{G}=A+B \cos ^{2} \theta \tag{4}\\
& 15 \mathrm{G}=A+B \cos ^{2}(60-\theta) \tag{5}
\end{align*}
$$

Since, in addition to θ, A and B are also not known, a third independent equation is required. If a very similar radical (trans-but-2-enyl) is considered, ${ }^{2}$ its a_{Me} splitting can be used to fit the free rotation equation (6).

$$
\begin{equation*}
a_{\mathrm{Me}}=16.4 \mathrm{G}=A+\frac{B}{2 \pi} \int_{0}^{2 \pi} \cos ^{2} \theta \mathrm{~d} \theta=A+B / 2 \tag{6}
\end{equation*}
$$

The same approach can be repeated to generate a second set of three equations using the two $a_{7-\mathrm{H}}$ splittings (see Table) and $a_{\mathrm{Me}} 3.2 \mathrm{G}$ taken from the isobutenyl radical. ${ }^{2}$ The results of both sets of equations are expected, in addition, to fulfil the following conditions: (i) the term A has to be small, i.e. lying within the theoretically expected zero and the largest values empirically observed ($3-4 \mathrm{G}$); ${ }^{8,9}$ (ii) within the experimental uncertainty the θ value calculated from one set of equations must be equal to that derived from the second set, since the half-chair conformation of (8) has a centre of symmetry with respect to the cyclic moiety.

The solution of the first set (values for 4 - and $4^{\prime}-\mathrm{H}$). yields $A 3.6 \mathrm{G}, B 25.5 \mathrm{G}$, and $\theta 12^{\circ}$; the solution of the second set (for 7 - and $7^{\prime}-\mathrm{H}$) gives $A 1.5 \mathrm{G}, B 3.3 \mathrm{G}$, and

The possible arrangements of (7) are the planar (two equal θ of 28°) and the envelope conformation ($\theta_{1} 15$ and $\theta_{2} 56-15^{\circ}$). Since it was not possible to observe two different $a_{4-\mathrm{H}}$ splittings, as in the case of (8), the average of the two possible values has to be considered. The equation thus becomes (7) where A and B have the
$a_{4-\mathrm{H}}=22.7_{5} \mathrm{G}=$

$$
\begin{equation*}
A+B\left[\cos ^{2} \theta+\cos ^{2}\left(56^{\circ}-\theta\right)\right] / 2 \tag{7}
\end{equation*}
$$

same values as in (8) (3.6 and 25.5 G, respectively). The solution affords $\theta 16^{\circ}$ which fits expectations for an envelope conformation. So far only half-chair conformations had been reported for five-membered radicals : 9,10 however no double bond, or partial double bond, was present in these examples. The strain due to the allylic bond in (7) is such as to modify the half-chair into an envelope.

EXPERIMENTAL

The e.s.r. spectra were recorded with a Varian E 104 spectrometer equipped with standard temperature devices. The light source was a high-pressure mercury 1 kW lamp; the optical system consisted of Suprasil quartz lenses. Coupling constants were verified by computer simulation using a program in which a Lorentian line-shape was assumed.

All materials employed in this study were reagent grade commercial samples, most of which were used without further purification.

A small amount of di-t-butyl peroxide was introduced in
a Suprasil e.s.r. tube followed by the desired amount of hydrocarbon. The contents were thorougly degassed on a vacuum line by the freeze-thaw technique, after which the desired amount of solvent (cyclopropane) was introduced into the sample tube by bulb-to-bulb distillation: the tube was then sealed off in vacuum with a flame.
G. P. thanks the C.N.R., Ozzano E., for financial support. [9/904 Received, 12th June, 1979]

REFERENCES
${ }^{1}$ J. K. Kochi and P. J. Krusic, J. Amer. Chem. Soc., 1968, 90, 7157.
${ }_{2}$ J. K. Kochi and P. J. Krusic, Chem. Soc. Special Publ., 1970, vol. 24, p. 147.
${ }^{\mathbf{3}}$ F. Bernardi, M. Guerra, L. Lunazzi, G. Panciera, and G. Placucci, J. Amer. Chem. Soc., 1978, 100, 1607.
${ }_{4}$ R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 1963, 39, 2147.

5 J. K. Kochi and P. J. Krusic, J. Amer. Chem. Soc., 1970, 92, 4110.
${ }^{6}$ R. Bucourt, in ' Topics in Stereochemistry,' eds. E. L. Eliel and N. L. Allinger, Wiley, New York-London, 1974, vol. 8, p. 159; B. Testa, 'Principles of Organic Stereochemistry,' Dekker, New York, 1979.

7 J. K. Kochi, in 'Advances in Free Radical Chemistry,' ed.
G. H. Williams, Elek, London, 1975, vol. 5, p. 189.
${ }_{8}$ A. Horsfield, J. R. Morton, and D. H. Whiffen, Mol. Phys., 1961, 4, 425.
' W. T. Dixon and R. O. C. Norman, J. Chem. Soc., 1964, 4850,
${ }^{10}$ L. Lunazzi, G. Placucci, and L. Grossi, J.C.S. Chem. Comm. 1979, 533.

